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Abstract: The wine-growing sector represents one of the most important sectors of the agri-food system in the 

Italian region of Apulia. Suffice it to say that wine-growing alone has about 11 thousand farms and 600 wine 

cellars. The regional area allocated to this sector is about 89,000 hectares, which represents about 10% of the 

national figure. In addition, the data indicate that in recent years the production of wine from Puglia has followed 

an increasing trend, covering about 20% of the national total. However, it is the production of table grapes in this 

region that boasts 60% of all Italian production. The latest ISTAT data available show that, with over 24,000 

hectares, Puglia is the first region for area destined to the cultivation of table grapes. To support this large agri-

food chain there are investments related to the purchase of tangible and intangible assets aimed at improving 

product quality, greater organizational efficiency to increase market demand, and increased competitiveness. To 

achieve these objectives, agricultural practices related to agriculture 4.0 and precision farming are increasingly 

used. In this study we want to highlight how, starting from RGB images that can be captured by different devices 

(drone, robot or camera), it is possible to create a dataset to train computer vision models and obtain potentially 

usable data at an agronomic level, as a decision support. In particular, the study proposes a computer vision model 

trained with images of table grapes captured in a vineyard in Apulia (Italy). The objective is to have a greater 

understanding of the data available in the field from different devices, obtaining a more complete frame of the 

state of the art of the vineyard for more efficient agronomic management. 

Keywords: analysis of images, computer vision, vineyards, agriculture 4.0. 

1. Introduction 

The detection and tracking of fruits and vegetables is a fundamental aspect of precision agriculture, 

as detailed in several key studies [1-3]. Testing in low variability environments, characterized by lower 

fruit position uncertainty, reduced target occlusion and uniform light conditions, facilitates the 

implementation of learning-based detection systems [4; 5]. Environmental variability significantly 

affects the performance of these systems, with models trained in controlled light conditions achieving 

an accuracy of more than 95% compared to those operating in natural light [6; 7]. Furthermore, 

controlled environments facilitate model training, as in the case of Kim J-SG [8], where a non-

destructive system was developed to predict the fresh weight of head lettuce in an industrial plant, using 

images collected by an automatic image acquisition system. Although artificial vision systems are more 

effective in controlled environments, open field use is an evolving research challenge, with promising 

results already highlighted in recent [9; 10]. This study proposes a computer vision system based on 

smartphone images to develop a model for counting table grape bunches in the open field, with the aim 

of estimating yields. The objective is to ensure flexibility and adaptability of the model to different 

cultivars and the typical form of rearing in tent widespread in the region of Puglia, Italy. Previous 

research has used image analysis to estimate cluster compactness as an alternative to traditional visual 

methods, but few studies have faced the challenge of working with noisy image datasets [11; 12]. This 

is crucial for cross-sectional applications, including the monitoring of ripening, the detection of visual 

damage and the prediction of harvest to optimise response to market demand. The developed model has 

provided results consistent with the set objectives and is implementable on smartphones, and therefore 

within reach of farmers who will be able to benefit from a low-cost technology for yield estimation. 

Future prospects include the integration of the system with an autonomous agricultural robot, able to 

move between rows and provide real-time data for a more accurate yield estimate. 

2. Materials and methods 

The images were acquired in several vineyards of table grapes located in the agricultural area of 

Noicattaro, Puglia, Italy, with the initial objective of assessing the state of ripening of grapevines and 

any damage to support agronomic analyses and not with the intention of training a computer vision 

model. Only later was the image dataset used to develop a computer vision model, aimed at providing 

both a visual overview of plant and cluster health, to allow the counting of bunches for the estimation 
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of the yield in the different local cultivars. Fig. 1 shows some representative examples of the images 

used.  

 

Fig. 1. Images taken in the field with smartphones for the evaluation  

of the progress of ripening and agronomic aspects 

It is important to note that many of the images acquired were discarded due to the quality being too 

low for the purpose of the work. In fact, image processing is a fundamental step for the efficient 

functioning of intelligent models [13; 14]. After cleaning the images, we then proceeded to create the 

dataset that was used for model training, explained in section 2.1. 

2.1. Overview of the Roboflow platform 

The platform used for model training is Roboflow. The work focuses on developing an object 

detection model that identifies the presence of grape clusters in images and then classifies these objects 

into relevant classes, as has been done in other recent works [15; 16]. The individual training steps are 

explained in the following sections. 

2.2. Labelling of images 

At this stage each image has been tagged with only one category: Brunches. Therefore, on the whole 

dataset containing 150 images of different table grape cultivars, each cluster has been associated with a 

label, thus adding an additional information to the image. A bounding box has been drawn around the 

target to have a higher level of detail, understood as the addition of information related to the shape of 

the cluster and the category of belonging (Ground truth). Fig. 2 shows an example of this. 

 

Fig. 2. Bounding box of the cluster to which a label has been assigned;  

the model interprets the label as Ground truth 

2.3. Test split 

To train a computer vision model, the image dataset must be divided into three parts. 

1. Training split (or Train): composed of those images that will be used to train the model.  
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2. Validation set (or Val): represented by those images useful to monitor the performance of the model 

during training and prevent overfitting.  

3. Test set (or Test): are all those images that are displayed by the model after training, simulating real 

data never seen before. The Test serves to separate a part of the dataset that will be used only at the 

end of the training process to have an objective evaluation of the model.  

In this work, the dataset was divided into 86% of images from Train, 9% of images from Validation 

and 5% of images from Test. The total number of images in the dataset is implemented during the 

preprocessing and image augmentation phase explained in section 2.4. 

2.4. Preprocessing and imagine augmentation  

In this step of normalization and standardization, the dataset has been scaled to a fixed size of 640 

by 640, avoiding problems related to the variation of sizes between images. An auto-orientation has also 

been applied to correct any misalignment in the vertical arrangement. To increase the robustness of the 

model with respect to orientation variations, the dataset has been artificially increased by generating 

images rotated 90° clockwise and counterclockwise. Before the training, several copies of the original 

images were created, bringing the dataset to a total of 320 images (maximum dataset size). This process 

has resulted in a well-structured dataset, improving both the image quality (despite smartphone capture) 

and the number of samples, with the aim of optimizing model metrics. 

3. Results and discussion 

The results of training can be explained by Precision and recall values, but especially model metrics. 

The Precision was calculated as the ratio between true positive/(true positive – false positive) and 

measures how often the model prediction is correct. Its value for this model is 94.9%. The Recall was 

calculated as the ratio between true positive/(true positive – false negative) and measures the percentage 

of relevant labels correctly identified. The Recall value for this model is 75.5%. 

3.1. Training Graphs 

Mean Average Precision (mAP) was used to evaluate model performance, being a standard metric 

for computer vision models. The mAP is calculated as the weighted average of the accuracies at different 

thresholds, with the previous threshold being used as a weight, and is useful for comparing both different 

models and different versions of the same model. The value obtained for this model is 86.4%. During 

training, the behaviour of mAP is illustrated in Fig. 3.  

 

Fig. 3. Performance of mAP during model training. Dark purple line (mAP@50) shows the average 

accuracy considering IoU (Intersection over Union) 50%. Light purple line (mAP@50:95) considers 

the average accuracy over multiple IoU thresholds, from 50% to 95% in 5% increments 
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The dark purple line (mAP@50), which considers IoU (Intersection over Union) ≥ 50%, shows a 

rapid growth in the first epochs, stabilising between 0.75 and 0.8, indicating good learning in cluster 

detection with a certain margin of error in the bounding box. The light purple line (mAP@50:95), which 

evaluates accuracy on IoU thresholds between 50% and 95% in increments of 5%, represents a more 

rigorous metric, requiring greater accuracy in localization. As expected, the values are lower (0.55-

0.60), reflecting the higher severity of the criterion. Both curves show an increase with the number of 

epochs, signaling an improvement in performance. However, after about 100-150 epochs, the pattern 

ceases to improve significantly, suggesting convergence has been reached and training is potentially 

sufficient. 

3.2. Model vision 

In Fig. 4, the image of the first labelling phase is shown on the left (Ground Truth) and on the right, 

what the model returns to us after training (Model Predictions). From the test images, the model gives 

us a forecast of the number of clusters present where they can be derived, establishing the confidence 

threshold parameter, information on agronomic parameters of grape clusters, as well as information on 

trust and category.  

 

Fig. 4. On the left the Ground Truth assigned during the image labelling phase; on the right the 

model predictions that give us the total number of clusters present in the image 

Conclusions 

The yield of a table grape vineyard can be estimated by counting the number of clusters from images 

using computer vision models. In this work a dataset of 150 images taken with a smartphone in different 

fields with different table grape cultivars was created. The starting images were improved in quality due 

to the high initial noise, and later a label was assigned to the grape bunches. The dataset was 

implemented to a total of 320 images and split into Train, Validation and Test images before being 

subjected to training. Precision and recall values reached 94.9% and 75.5%, respectively. The Mean 

Average Precision (mAP) metric used to measure the performance of the computer vision model is 

86.4%. In the future, it is planned to test the model directly in the field to validate the predictive results 

of the computer vision system with those measured by an operator in the field during the grape 

harvesting phase. 
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